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A thermal-creep flow of a slightly rarefied gas induced axisymmetrically around two 
unequal spheres is studied on the basis of kinetic theory. The spheres, whose thermal 
conductivities are assumed to be identical with that of the gas, for simplicity, are 
placed in an infinite expanse of the gas a t  rest with a uniform temperature gradient 
a t  a far distance. Owing to the poor thermal conductivities of the spheres, a tangential 
temperature gradient is established on the surfaces, and this causes a thermal-creep 
flow in its direction. Consequently, the spheres experience forces in the opposite 
direction. 

The flow considered here is a low-Reynolds-number flow in the ordinary fluid- 
dynamic sense (except for the Knudsen layer), and the solution is obtained in terms 
of bispherical coordinates, with respect to which the system of equations of Stokes 
type is well developed. The velocity field around the spheres and the forces acting 
on them are given explicitly. The results show the interesting feature that the smaller 
sphere experiences the minimum force a t  a value of the separation distance that 
depends on the radius ratio. This is in contrast with the case of the axisymmetric 
motion of two spheres treated by Stimson & Jeffery (1926) in ordinary fluid dynamics 
a t  low Reynolds number. 

The ultimate velocities that the spheres would have under the action of the present 
thermal force when they are freely suspended are also obtained by utilizing the results 
for the forces of axisymmetric translational problems of two spheres at low Reynolds 
number. For a given temperature gradient in the gas, both spheres acquire larger 
velocities than those they would have if they were alone, and the smaller sphere tends 
to move faster than the larger one in the direction opposite to the temperature 
gradient. 

Also presented, for completeness, are the results for the sphere-plane case and for 
the case of eccentric spheres, the solutions for which are derived as special cases of 
the preceding problem of two unequal spheres. 

1. Introduction 
Fine particles of micron and submicron size, when dispersed in a gas with 

non-uniform temperature, often experience forces other than gravity or electrostatic 
force, owing to the rarefaction of the gas; when the mean free path of gas molecules 
( -  0.1 pm in the standard state) is not negligible compared with the particle size. 
These forces, which are called thermal forces, are extensively utilized in many 
engineering devices such as precipitators for removing minute particles from gas or 
gas streams. These thermal precipitators are often said to be more effective than 
electrostatic ones (e.g. Talbot et al. 1980). As in the sedimentation problems treated 
by Batchelor (1972,1982), when thedispersionsare notextremelydilute, fluid-dynamic 
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interactions between particles (mainly pairs of particles) become appreciable, thus 
affecting the thermal forces, and eventually the average movement of particles being 
removed. It therefore becomes necessary to  study the fundamental problem of 
two-sphere interactions in a slightly rarefied gas flow : this is known as thermal creep. 
The present study is concerned with a part of this basic problem. 

Now consider a body placed in a slightly rarefied gas. When the temperature of 
the body surface is not uniform, a flow will be induced around it  in the direction of 
the temperature gradient of the surface owing to the rarefaction of the gas. If the 
body is freely suspended, i t  moves in the direction opposite to the temperature 
gradient. Such a flow is called a thermal-creep flow (Kennard 1938, p. 327), and for 
slightly rarefied gases this is the most important flow in addition to the one due to 
simple velocity slip on the surface of the body. Kennard first attempted an analysis 
for the steady thermal-creep flow over a plane wall from the viewpoint of kinetic 
theory, and later Sone (1966) and Kogan (1969, chap. V) gave rigorous analyses of 
the problem based on the Boltzmann-Krook-Welander equation (Bhatnager, Gross 
& Krook 1954; Welander 1954; Kogan 1969, pp. 79-83) together with a boundary 
condition of diffusive type. Studies have also been made under a more general 
boundary condition of specular-diffusive or Maxwell type (Onishi 1972a, 1973; 
Loyalka, Petrellis & Storvick 1975; for details of the boundary condition see 
e.g. Cercignani 1975, p. 119). 

Onishi (1972b) also studied the thermal-creep flow induced around a single sphere 
when a uniform temperature gradient is imposed on the gas a t  infinity, and obtained 
explicitly the velocity field together with the force acting on the sphere. There, the 
thermal conductivity of the sphere was assumed to be of the order of that  of the 
ambient gas. Owing to this relatively poor thermal conductivity of the sphere, a 
non-uniform temperature distribution was formed on the surface, and a flow was 
induced over it in the direction of the temperature gradient. Originally this problem 
was considered by Epstein (1929), who treated i t  as a problem of thermophoresis (see 
Waldmann 1961; Dwyer 1967; Gorelov 1976; Sone & Aoki 1977). His analysis was 
based on the so-called classical slip-flow theory, and therefore lacks rigour but gives 
qualitatively correct results. Talbot et al. (1980) review the theoretical and 
experimental work on the single-sphere problem, which is not necessarily restricted 
to small Knudsen numbers. 

Here we shall extend the analysis for the single-sphere problem (Onishi 1972b) to 
a case in which two unequal-sized spheres are present in the gas, on which is imposed 
a uniform temperature gradient a t  infinity. We will obtain the velocity field around 
the spheres, the forces acting on them, and the velocities acquired by the spheres when 
they are free. This problem is a superposition of two basic problems, namely the 
axisymmetric problem where the line of centres of the spheres is parallel to the 
temperature gradient, and the asymmetric problem where the line of centres is a t  
right angles to it. We consider only the former in the present paper; the latter will 
be discussed elsewhere. The analysis of the present problem will be carried out under 
the same assumptions as those for the single-sphere case; these are: (i) gas motion 
is described by the Boltzmann-Krook-Welander equation ; (ii) the interaction of gas 
molecules with the surface of the body is of a Maxwellian distribution characterized 
by its temperature and velocity (diffuse boundary condition) ; (iii) the mean free path 
of gas molecules is small compared with the characteristic length of the body (i.e. the 
Knudsen number $ 1 )  ; (iv) the deviation of the system from a stationary equilibrium 
reference state is small, and the problem can be linearized (this implies, together with 
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assumption (iii), that the Reynolds number of the bulk flow field is negligibly small 
(see e.g. Sone 1971)); and (v) the heat flow inside the body obeys Fourier’s law of 
heat conduction. In  addition to assumptions (i)-(v), we further assume that the 
thermal conductivities of the spheres are identical with that of the ambient gas. This 
last assumption reduces the amount of troublesome calculations needed in dealing 
with the temperature field, while still enabling us to retain the qualitatively 
significant nature of the problem. Incidentally, we note that this assumption is not 
so unrealistic as i t  would seem. Actually, for some particles such as sawdust, paper, 
glasswool, silk, charcoal, sponge etc., which are commonly seen in air, their thermal 
conductivities are quite low and their ratio to those of common gases (e.g. air, N,, 
Ar, He) is of order unity. 

We have also considered the thermal-creep flow induced by a sphere in the presence 
of a plane wall, and the flow induced in a region bounded by two eccentric spheres, 
obtaining the velocity acquired by the free sphere as well as the velocity fields of the 
gas in both cases. These problems together with the one for two unequal spheres 
complete the axisymmetric-flow problem for thermal creep. 

Although there still remain asymmetric-flow problems to be discussed in order to 
gain a comprehensive understanding of the interaction problem of thermal creep, the 
present work will serve to elucidate some of the fundamental aspects of this problem 
(see §§5 and 6). 

2. Fundamental equations and the boundary conditions 
The description of the general behaviour of gas around solid bodies has been given 

by Sone (1969, 1971) on the basis of assumptions (i)-(iv) stated in $1.  The present 
analysis will be based upon this general theory. According to it, fluid-dynamic 
quantities such as velocity, pressure and temperature are expressed by the sum of 
two parts, the Hilbert part (with suffix H) and the Knudsen-layer part (with suffix 
K), each of which is obtained in an expansion in terms of the Knudsen number of 
the system (see also Sone & Aoki 1977; Sone & Onishi 1978; Onishi 1982):t 

f = f H + f K ,  (2.1)$ 

where 

fH = f p + k f p + k 2 f g ’ +  ..., fK=kf$)+k2f$)+ ..., (2.2a, b )  

(2.3) 

f stands for any one of the perturbations of fluid-dynamic quantities from a stationary 
equilibrium reference state. K is the Knudsen number defined by K = 1/L, 1 being 
the mean free path of gas molecules at the reference state, and L a reference length 
of the system. fH has a lengthscale of variation of the order of the characteristic length 
( N L), and fK has a lengthscale of variation of the order of the mean free path of 
gas molecules. fK is only appreciable within the Knudsen layer formed near the 
surface of the body, and therefore takes account of the correction to fH there. 

t I n  particular, for the details of the theory and the refined results, reference may be made to  
Sone & Onishi (1978), in which the general behaviour of a condensable gas is derived systematically 
from the Boltzmann-Krook-Welander equation. 

1 The decomposition of the solution into two parts for small k is a useful technique (Grad 1969). 
The accuracy of each part should be good enough when k is sufficiently small for terms involving 
exp ( -  l /k )  in the solution to  be negligible compared with any powers of k .  
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The Hilbert parts of the pressure, velocity, temperature and density satisfy a 
system of equations of Stokes type : 

vpp = 0, v - u p  = 0, (2.4), (2.5) 

vpp+i) - v z U ( m )  H = 0 v2 'H ( m )  = 0, (2.61, (2.7) 

(2.8) 

wherern = 0 , 1 , 2 ,  ... .P,(1+p),(2RT,)~u,T,(1+~)andPo(RT,)~'(1+p)arerespectively 
the gas pressure, velocity vector, temperature and density. Po is a reference pressure, 
T, a reference temperature and R the gas constant per unit mass. L-IV is the gradient 
operator for a rectangular coordinate system Lx. The viscosity y of the gas a t  this 
reference state is related to the Knudsen number K a s p  = P,(8RT,/n)-a L K  (Vincenti 
& Kruger 1965, chap. X). 

The boundary conditions on the surface of the body appropriate for the system 
of equations (2.5)-(2.7) are 

= u@, 7(o) H = 'W, ( 0 )  (2.9), (2.10) 

(2.11a) 

u8):)'n = 0, (2.1lb) 

&m) = P H  (m)- 'H (m), 

(u(1) H - ' W )  (1) - 2 = - 0 n [Vu( 4) + ( v u g ) )  TI. 2 - K ,  2'  vrp, 

T$-T# = d,n.Vrg)) ,  (2.12) 

where k,  = - 1.016191, K ,  = -0.383161 and d, = 1.302716 (these numerical values 
are taken from Sone & Onishi 1978). n and tare  respectively the outward unit normal 
vector (pointed into the gas) and a unit tangential vector to the surface. (2RT,)1uw 
and T,(1 +rw) denote the surface velocity (with u,.n = 0) and surface temperature 
of the body, uw and rw being expanded as in (2.2a). ( V U ) ~  denotes the transpose of 
Vu. The second term on the right-hand side of (2.11a) is the driving force for the 
thermai-creep flow. 

The Knudsen-layer parts of the velocity, density and temperature are, near the 
surface of the body, 

u(l)' t  K = - Y,n-[Vug)+ ( V u g ) ) T ] ' t - l y  2 1  Z'VT~) ,  ug)'n = 0, (2.13a, b) 

pg) = 521n.Vrg), rg) = @,n-V7g) .  (2.14), (2.15) 

Here Y,, &, 52, and 0, are the universal functions of 7, a stretched coordinate along 
n,  defined as ( x - x , ) / k  = nq, where xw represents the surface of the body (for the 
numerical values of these functions see Sone & Onishi 1978). 

Next, inside the body, when assumption (v) of $1 holds, we have the Laplace 
equation for the temperature field : 

v27" = 0, (2.16) 

where T,(l+?) denotes the temperature of the body and f has an expansion of the 
form (2.2a). 

To summarize, we have only to solve (2.4)-(2.7) and (2.16) under the following 
conditions ; 

(i) conditions on the surface of the body, (2.9)-(2.12); 
(ii) conditions a t  infinity for pH, uH and r H ;  
(iii) continuity condition for heat flow on the surface of the body, i.e. 

(2.17) 
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where A, and A, are the thermal conductivities of the body and the gas respectively, 
A, being related to K as A, = :RP,(SRT,/x)-: LK (Vincenti & Kruger 1965, chap. X). 
Here we have introduced a factor A,/A, in (2.17) for generality, but it is noted that 
we have assumed A, = A, for simplicity in the present problem. P0(2RT,)4 Q is the 
heat-flux vector of gas, and is given by 

Q . n  = k( Qg) + Q $ ) ) . n  + k2(Qg + Q g ) ) . n  + . . . 
= -~n*v7g)k+O(k2). (2 .18 )  

The term O ( k 2 )  is not written down explicitly, because it does not affect the velocity 
field up to the order we are concerned with (i.e. to order k). 

3. The problem and the coordinate system 
Two spheres with radius a, (labelled S,) and radius a, (labelled S,) are placed in 

an infinite expanse of a slightly rarefied gas. The gas is a t  rest a t  infinity, and has 
there a uniform pressure and a uniform temperature gradient parallel to the line of 
centres of the spheres. We introduce the cylindrical coordinate system (Lr ,  $, Lz) with 
the z-axis being taken to be coincident with this line of centres, and also the 
bispherical coordinate system (6, $, a) ,  i.e. 

( 3 . 1 )  

6 = constant denotes a spherical surface with its centre on the z-axis, and, according 
to whether the constant is positive or negative, the centre lies on the positive or 
negative side of the z-axis. = 0 represents the plane a t  z = 0, and g+ f co the point 
a t  z = f c .  a = constant is the arc of a circle, terminating a t  z = f c  and having its 
centre in the plane z = 0. a = 0 is the segment of the z-axis for which IzI 2 c, and 
a = x the segment for which Iz( 5 c. c is the scale factor related to the radius of the 
sphere and also to the distance between the centre of the sphere and the origin of 
the coordinate system, namely 

Lc 
2, = Lccotht,, 

, 
LC 

a2 = - 
sinh 6, 2, = Lc coth t2, 

where 6, and t, are positive constants, with 6 = denoting S, and t = -6, denoting 
S,. If 6, < t1, and S,  is described by 6 = t,, then S, encloses within i t  S,. 2, and 2, 
are the distances between the origin of the coordinate system and the centre of each 
sphere (figure 1) .  

Now we define a reference state for the present analysis. We choose a,, the radius 
of&, as L, and the pressure a t  infinity as P,. Also we adopt as T, the temperature 
of the gas a t  z = 0 and r+ co. With this reference state, we can write down conditions 
(ii) and (iii) of $ 2 :  

uH+O, p H + O ,  rH+Bz at infinity, (3.3) 

(3.4a, h )  

and on both S, and S, 

n.VW = n'V7g n*V?(l) = n*V7g' + . . . , 
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T' 
h \ I 

I 
FIGURE 1. Schematic view of the problem and the bispherical coordinate system (6, r$, a)  

where the assumption A, = A, is made, and B = a,T;'(aT/aZ),, (aT/aZ),  being 
the dimensional uniform temperature gradient a t  infinity. It should be noted again 
that (3.4b) does not affect the velocity field up to  O ( k ) ,  and therefore its complete 
expression is omitted. 

4. Analysis 

and (3.4a) are easy to  obtain. They are 
The solutions to (2.4)-(2.7) and (2.16) with m = 0 that satisfy (2.9), (2.10), (3.3) 

p g )  = 0,  = 0, p g )  = 0, ~ g )  = Bz, y(0) z= Bz. (4.1) 
We proceed with the next-order solutions (with m = 1 ) .  Introducing a stream 

function $ which satisfies 

and eliminating p g )  in (2.6), we have 

9 4 ( $ )  = 0 

in place of (2.6), where 

J 

(4.3) 

(4.4) 

and e(5) and e(") denote the unit vectors on the surface 6 = constant in the directions 
of increasing 6 and a respectively. They are orthogonal to each other, and 
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A ,  = 16 sinh' (n + i) (5, + 5,) - 4(2n + 1)' sinh2 (5, + 5,), 
A,, = (2n - 1 )  cosh (n - f) 6, sinh (n + $) (6, + 5,) 

A,, = (2n-l)cosh(n-i)f;,sinh(n+$) (t1+E2) 

\ 

- (2n + 3) [sinh (n -+) 5, + sinh (n - f) 5, cosh (n + $) (5, + [,)I, 

- (2% + 3) [sinh (n - f) f;, + sinh (n - f) 5, cosh (n + $) (5, + E2)3 ,  

The general solution to (4.3) is known to be (Stimson & Jeffery 1926) 

00 

@ = (cosht-p)-; C. [A,cosh(n-i)c+B,sinh(n-f)[ 
n-0 

+ C, cosh (n+$) <+ D, sinh (n+t) 53 V,(/3), (4.6) 

where V,(p) = P,-,(P) -P,+,(p), P,@) being the Legendre polynomial of order n. A,, 
B,, C, and D, are all constants to be determined by the conditions for @, which can 
be readily written down from (2.11) with (4.1) being taken into account, i.e. 

@ = 0, (4.7) 

1 -pz 
= K,Bc2 sinh 5 

(cash 5-p)3 
on S, and 8,. Expanding (l-P2)(coshC--/3)-: in terms of V,(p), we obtain the 
expansion form of (4.8) as 

(4.9a) 

(4.9b) 

, (4.11) 
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A ,  and the Atj are respectively the determinant and the cofactors of the matrix whose 
inverse multiplied by the column vector with components (0, 0, b,, b4) yields the 
solution vector (A,,  B,, C,, D,). 

When the two spheres are equal, i.e. 5, = t,, the results become simple, giving 

I n(n+ 1 )  sinh5,cosh ( n + i ) ~ l e - ( n f : ) ~ l  
An=-442/2K,Bc2- 

2n + 1 2 sinh (2n + 1 )  t1 + (2n + 1)  sinh 26, ’ 

B, = D, = 0. 

(4.12) i 
The total velocity field (the Knudsen-layer correction included) now becomes 

( 4 . 1 3 ~ )  

(4.13b) 

sinh 5 sin 01 coshtcosa-S 
, (Hi+Hi  = l ) ,  

ch H = -  > H , =  ch 0 

where V,  and V,  are the components of the non-dimensional gas velocity (non- 
dimensionalized with respect to (2B!!7,)4) in the directions of r and z respectively. 
h(az/aa) = -(rsinhC)/c, and ( )s denotes the value evaluated on the sphere 
surfaces. Hence 

(4.14b) 

where h = a,/a,, and we have put z1 = Z J a ,  and z2 = Z,/a,. The stretched coordinate 
7 is given in this case as follows: 

Some of the numerical values of Y,(7) are Y , ( O )  = 0.54777, q ( O . 1 )  = 0.43961, 
q(1.0) = 0.16720, q(5.0) = 0.01256 (see Sone & Onishi 1978). 

We show some of the streamline patterns around two spheres in figures 2 and 3, 
where G denotes the minimum gap between the spheres. These patterns are based 
on the Hilbert part of the velocity (or $) only, and therefore need the Knudsen-layer 
corrections near the surfaces of the spheres. It would be sufficient, however, to get 
an overall idea of the flow around the spheres induced by the temperature gradient 
on the surfaces. 

Once these solutions are obtained, we can consider two other cases which are quite 
interesting. 

4.1. Sphere-plane case (when S, reduces to a plane wall) 
By letting <, --f 0 we can get S, to reduce to the plane at z = 0. By this limit process 
the tangential temperature gradient disappears on the plane and a uniform 
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4.78 

0 

4.78 

FIGURE 2. The streamlines for thermal-creep flow around two spheres (ae/al = 1.0, G/a, = 2.0). 
The flow is in the direction of the temperature gradient (aT/aZ),. - 100$/(42/2K, Bc2) = 0,0.04, 
0.15,0.34,0.61,0.94, 1.33, 1.78,2.29, 2.85, 3.46, 4.10 and4.78. The underlinedvaluesare indicated 
in the figure. 

3.39 

0 

3.39 

FIGURE 3. The streamlines for thermal-creep flow around two spheres (a2/al = 0.5, G / a ,  = 2.3). The 
flow is in the direction of the temperature gradient (aT/aZ),. - 100~/(42/2K1Bce) = Q, 0.03,O.l 1, 
0.24, 0.42, 0.65, 0.93, 1.25, 1.60, 2.00, 2.43, 2.90 and X3). The underlined values are indicated in 
the figure. 

temperature is established. Consequently the gas velocity vanishes on the surface 
(at  least to O ( k ) )  because no other velocity slip occurs there owing to ug) = 0 (see 
(2 .11)) .  

With the application of c z + O  in (4.10) with (4.11), 

n(n+ 1) 
2n+ 1 

A ,  = -22/2K,Bc2-  

sinh 2c1 sinh ( n  +a) 5, - (2n + 1) sinh2e1 cosh (n+a)  
-(,++) 51 X e 

4sinh2 ( n + ~ ) ~ , - ( 2 n + 1 ) 2 s i n h 2 ~ ,  1 

(4.16) 
n(n+ 1)  sinh2 El sinh ( n  + +) e-(n+:)E1 

(2n+ 3, 4 sinh2 (n+$)  tl - (2n+ 1)2 sinh2 5, ’ 2n+ 1 
B ,  = - 2 d 2  K,Bc2---- 
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3 .O 

I .6 

0 

1.6 

FIGURE 4. The streamlines for thermal-creep flow around a sphere in the presence of a plane wall 
(G/a, = 1.0). The flow is in the direction of the temperature gradient (aT/aZ),, i.e. from left to 
right if (aT/aZ), > 0, and vice versa if (aT/aZ),,, < 0. - 100+/(4d2KI Be2) = 0,  0.05, 0.2, 0.4, 0.6, 
0.8, 1.0, 1.2, 1.4, u, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, a, 3.2, 3.4, and 3.5. The underlined values are 
indicated in the figure. 

are obtained. Mention may be made here that these results hold whatever the thermal 
conductivity of the plane wall. A streamline pattern is shown in figure 4, where G 
is the distance between the plane and the nearest point of the sphere. 

The total velocity field is obtained from (4.13)-(4.15) with (4.14b) and (4.15b) 
replaced respectively by (hazlaa), = 0 on the plane (5, = 0) and 7 = z / k  near the 
plane. 

4.2. Eccentric-spheres case (S, encloses S,) 
When S, is described by E = E, for 5, < El, S, encloses S,. The solutions in this case 
are obtained by simply replacing 5, in all the expressions for b,, A , ,  A,,, ... , A,, 
and A,, in (4.10) and (4.11) by -E2, except for the exponential term in b,. Figure 
5 shows a typical stream line pattern for this case. 

The total velocity is obtained by replacing (4.14b) with 

1 
( h g ) s  = - x [ h 2 - (  z -zJ2I?  on 8, (5 = 521, (4.17) 

and (4.15b) with 

7 = { h - [ r 2 + ( z - z 2 ) 2 ] ~ } / k  near S,, (4.18) 
other equations being left unchanged in (4.13)-(4.15). 
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FIGURE 5 .  The streamlines for thermal-creep flow within the eccentric spheres (a.Jal = 3.0, 
G/a,  = 1.0). (aT/aZ), is from left to right in this example, and the flow is in the direction indicated 
by arrows. The surfaces of the two spheres and a spherical surface within the flow domain indicated 
by a thin solid line are those for + = 0. Also two segments of the centreline are a line for + = 0. 
100+/(42/2K,BcZ) = -0.02, -0.04, -0.06, -0.08, -0.1, -0.12, -0.14 and -0.16, as the size 
of the closed streamlines near the inner sphere becomes smaller. 1O0+/(42/2K,Bc2) = 0.05, 0.2, 
0.4, 0.6, 0.8, 1.0, 1.2 and 1.3 as the size of the closed streamlines near the outer sphere becomes 
smaller. 

5. Forces for two-spheres case 
The force I; acting on a sphere is 

F = JJA a*ndA, 

where A is a control surface that encloses the sphere. Q is the stress tensor (in the 
present case identical with minus the momentum-flux density tensor), and is given 
in the form (Sone 1971) 

Here 1 is the unit tensor ; P is the perturbation of the stress tensor from a uniform 
state and is split into two parts PH and PK as in (2.1). Since PK does not contribute 
to the total force (Sone & Tanaka 1980), the Hilbert part P, suffices for the 
description of Q. Thus 

Q = -P,(/+P). (5.2) 

d = {- (1  + p,) /+ k[Vu, + (VUH)T]-k2VV7H+ f .  .>A (5.3) 

p H ,  uH and 7H are to be expanded according to (2.2a), and the above expression is 
correct up to O(k2) .  Taking (4.1) into account, we have 

(5.4) Q = - p,/+ k2q)  { -pp/+ [Vup + (vup)  TI> + O(k3) .  
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Now from the symmetry of the problem the forces acting on the spheres have only 
a z-component F.  Following Stimson & Jeffery (1926) or Happel & Brenner (1965, 
chap. 4), we can obtain the expression for F in terms of $: 

(5.5) 

where a surface 5 = constant is taken as A of (5.1), and the upper sign applies to 
5 = positive constant and the lower to 6 = negative constant. With the use of (4.6) 
for $, the right-hand side of (5.5) reduces to 

It is convenient to introduce the non-dimensional force coefficients f, and f, defined 

where F, and F, are the forces acting on S ,  and S, respectively. F,  denotes the force 
acting on the sphere with radius a, in a single-sphere problem when A, = A,. This can 
be expressed appropriately in terms of either the viscosity p of the gas or its thermal 
conductivity A,, 

F, = 8nKlC* r$m (R) 8RT, -; a;K, 

with C* = Rp or C* = ah . Here the relation A, = $Rp, which holds for the Boltzmann- 
Krook-Welander equation (see Vincenti & Kruger 1965, chap. X),  has been used. The 
more general expression when As + A, for a single-sphere case has .a factor 
[i +(A,-A,)/(2h,+As)] on both sides of (5.8) (Onishi 1972b). 

Now using the expressions (4.10) for A,, B,, C,  and D, together with (4.11), we 
obtain the expression for fl from (5.7): 

,f, = 

.g 

00 

32n(n+l)sinh& {sinh(n+i) (El+(,) [sinh2cle(n+:)t2-sinh2c 2 e-(n+;)t2] 

e-(n+;) t1 

A n  
(2n + 1 )  sinh t1 sinh 5, sinh (El + 5,) sinh (n+i )  . (5.9) 

The expression for f ,  can be derived from (5.9) by interchanging 5, and 5, with 6, 
and 5, respectively. When the two spheres are infinitely separated (i.e. 5, and c2+ 0 0 )  

fl+l and f 2 + 1 ,  (5.10) 

as naturally expected. These coefficients fl and f z  are functions of 6, and 5, only, and 
therefore functions of h and g, g being the non-dimensional separation between the 
spheres defined by g = G/al .  5, and cz are related to h and g as 

f ,  = cosh-' z1 = In [z,  + ( 2 ;  - l);], 5, = cosh-l 
A '  

(5.11) 

, 2, = (AZ- 1 +z;p. 
(l+h+g)2+1-h2 

2 ( l + A + g )  
2,  = 

The numerical values of f l  and f ,  for A 5 1 have been calculated for various values 
of g.? Those for h > 1 can be obtained from the relation 

f , ( g ,  A )  =f,(gh-l,h-'),  01' f1(g,h) =f2(gh-1,  A - 1 ) ,  (5.12) 

t Copies of the tables may be obtained on request from the author. 
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which can easily be deduced from physical considerations. The graphs for f, and f, 
versus g are shown in figure 6, where we notice that the forces acting on the smaller 
spheres have the minimum values at certain separations (9 x 0.6-1.0) which depend 
on A. In  contrast with this, for two unequal spheres moving along the line of centres 
the forces become minimum when they act on the larger spheres according to the 
calculation by Cooley & O’Neill(1969a) based on Stimson & Jeffery’s (1926) solution. 

The convergence of the series (5.9) is good when the two spheres are far apart, 
but it becomes very slow as they become close together, owing t o  the term 
exp ( &nLjl,2). When the two spheres are touching, we may convert the above series 
into an integral form by taking appropriate limit, i.e. letting tl, [, + O ,  while retaining 
n&, nt, and sinh &/sinh E2 as O( 1). The result is 

2z2 sinh vz[h2eef”-2)z- e-””]- 2( 1 + A )  z [ 1-e-2”1dz, 
(5.13) limf, = j, 

h2[sinh2 vz- ( ~ z ) ~ ]  
51+0 
5 2 4  

Where v = (1 + h ) / A .  A similar integral is also obtained for lim f,. It is clear that  the 
integral in (5.13) diverges logarithmically unless h = 1 (or v = 21, because the 
integrand behaves like 6h(h - 1) ( A  + l ) - , / /x  for small x. It should be noted, however, 
that  the sum of the two forces acting on AS’, and S,, i.e. Fl + 8, always remains finite, 
for the singular behaviour of lim f, is cancelled out by the corresponding behaviour 
of lim hfi. For a special case h = 1 the integral (5.13) becomes simple, converging to  
yield 1 O0 x2(l -e-” 

lim fi = a S, 
El+, sinhx+x 

)dx = 0.679920. (5.14) 

Attention must be drawn to the following point: when the two spheres become close 
together the mean free path of gas molecules becomes comparable to, or even larger 
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than, the gap between the spheres, which leads to  violation of assumption (iii) made 
in 9 1. Therefore the present analysis does not hold for the case in which the two 
spheres are close together. Naturally, the expressions (5.13) and (5.14) do not make 
a physically meaningful point but merely a mathematical one. I n  spite of this, 
however, i t  would be of some significance to examine the behaviour of the series (5.9) 
as t1 and 6, + 0. 

When the spheres are not constrained they move in the direction opposite to the 
temperature gradient imposed a t  infinity. We wish to know what velocities the 
spheres will have under the thermal force (5.7).t Suppose that the spheres S, and S, 
were translating in the gas along the line of centres under the external forces Fe, and 
Fez respectively. Since the gas motion caused by these spheres is governed by 
equations of Stokes type, we may express these forces in the form (see e.g. Brenner 
& O’Neill 1972; Jeffrey & Onishi 1984), 

where W, and W, are respectively the velocities of 8, and 8, in the direction of 
increasing z. Inverting the above expressions, we may also write for W, and W, 
(Batchelor 1976, 1982; Jeffrey & Onishi 1984) 

The sets of non-dimensional scalar quantities (X,,, XI,, X,,, X2,) and (x,,, xI2, xgl, xzB) 
are respectively, those commonly called the resistance functions and mobility 
functions for axisymmetric translational motions of two spheres, and it may be noted 
that the following relations hold : 

X,,(g, 4 = X,,(gh-l, A - 1 ) ,  

(5.17) 

A comprehensive account of these scalar functions is given by Jeffrey & Onishi (1984), 
and some of the numerical values of xij ( i , j  = 1 or 2) are listed in that paper as x$(s, A ) ,  
where s = 2 ( l + h + g ) / ( l + h ) .  

and Fez = F, into (5.16) yields Substitution of F,, = 

w, = - Eb xY(g,A), w, = - Eb 4 g , 4 >  (5.18) 
6Wal 6.nlLa1 

where 
2h 2 

xT = “llfl+m+h12f,’ x: = ~ + h Z l f 1 + ~ 2 2 f 2 .  (5.19) 

and xT,xT+1 as g - t c o .  

t The effect of unsteadiness due to the sphere motions through the gas with the uniform 
temperature gradient is found to be of order B2, which is totally negligible in the present linearized 
theory (see e.g. Sone & Aoki 1977). 
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FIGURE 7 .  The force coefficient on the sphere (sphereplane problem for thermal creep). 

Note that the relation xT(g,  A)  = xT(gh-', h-l)  holds. Some values of xT(g, A )  and 
x:(g, A )  are as follows : for h = 1 .O, x: = x: = 1.027 68 a t  g = 1 .O, x: = x: = 1.007 52 
at  g = 3.0; for h = 0.5, x: = 1.00470, x: = 1.06007 at  g = 1.0, and x: = 1.00126, 
x: = 1.01086 at g = 3.0 (more data may be obtained from the author on request). 
Both CC;~ and x: are larger than unity. The above expressions give the translational 
velocities that would be acquired by S,  and S,  when they are free to move under the 
action of the given thermal force (5.7). It is seen that the smaller sphere tends to move 
faster than the larger one, because x: is smaller than x: for h < 1 .  We mention 
incidentally that - F0/67cpa, is approximately 6.1 K (mm/s) for air a t  = 0 "C when 
the temperature gradient is one degree over 100al, i.e. a,(aT/aZ), = 0.01 "C. 

6. Forces for the other cases 

obtainable from the results of $5. 
We now turn our attention to  the forces for the other two cases, which are 

6.1. Sphere-plane case (when S, reduces to a plane wall) 

With the application of c2 +0 in (5.9), fi becomes 

co sinh3 tl sinh (n  +$) t1 e-("+i) 61 

fi = I: 8n(n+1) 
n=1 .4sinh2 (n++)t1-(2n+ 1)2sinh2cl'  

and also f l+l  as t,+co. (6.2) 

The graph for fl is shown in figure 7 .  The total force F2 acting on the plane wall is 
equal to but opposite in sign to the force Fl acting on the sphere, as can be checked 
from (4.16) and (5.6). When the sphere is close to the plane (i.e. t l + O ) ,  the above 
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series diverges logarithmically, because the integrand of (5.13), when the limit process 
A+ co (or v+ 1 )  is applied, behaves like l /x  for small x. 

When the sphere is left unconstrained in the gas, it will acquire the velocity due 
to the thermal force F,. The relation between the velocity of the sphere and the 
external force on it, on the other hand, is obtained by formally putting W, = 0 and 
A- fco  in (5.15) as 

where g = G/a,  (G is the separation between the plane wall and the nearest point of 
the sphere). Brenner (1961) has calculated the force coefficient on a sphere moving 
toward a plane wall, and it is clearly seen that the present scalar function X,,(g) is 
none other than this force coefficient. Thus Xl,(g) is given from Brenner as (see h 
in his notation) 

O' n(n + 1) 2 sinh (2n + 1) El + (2n + 1 )  sinh 2.& 
Xl1(g) = i sinh El n-l E (2n-l)(2n+3) 4 ~ i n h ~ ( n + ~ ) ~ ~ - ( 2 n + l ) ~ s i n h ~ ~ ,  -I}, (6.4) 

Equating the external force Fe, to the thermal force Fl given in (5.7) together with 
(6.1) fortl,  we have from (6.3) 

f x;r(g), x;" = 2, 4 w, = ~ 

6Val Xll 

and x;"+i as g- f co .  

The values offl, X,, and xT are also available (from the author on request). However, 
to get a rough idea for the velocity of the sphere under the thermal force, we give 
some examples of the values of xT(g): xF(0.2) = 0.64578, xT(0.6) = 0.87385, 
xT(l.0) = 0.93788, xT(2.0) = 0.98183, xY(5.0) = 0.99771. 

6.2. Eccentric-spheres case (when S,  encloses S,) 
In this case, we have 

m 

n-1 
f l  = E 16n(n+1)sinhE1 [sinh2~,-sinh2~,+(2n+1)sinh~,sinh~,sinh(~,-~,)] 

x [e--(2n+1)5z-e-(zn"+1)51]/d~(E1, E z ) ,  (6.6) 

where 

d;(tijE,) = dn(61, -6,) = 16sinh2 (n+t )  (E1-~2)-4(2n+1)2sinh2 ( 6 1 - E 2 ) ,  (6.7) 

and f i+ l  as &+oo (orh - tm) .  (6.8) 
The graphs of f, for some values of h are plotted in figure 8. 

The total force acting on S ,  by the gas is equal in magnitude but opposite in sign 
to that acting on S,, i.e. F, = - F, or f, = - f , /h.  This is easily checked by considering 
the integral of the stress divergence over a volume V bounded by two surfaces A ,  
and A,, both of which lie completely within the gas and enclose S,, and converting the 
integral by Gauss' theorem to surface integrals on A,  and A,, each of which eventually 
approaches 8, and S,  respectively. For El and 6, --f 0 an integral expression similar 
to (5.13) can also be obtained for the above series (6.6), and diverges logarithmically, 
since the integrand behaves like 6h(h+ 1) ( A  - 1)-,/x for small x. 

The sphere S,, if it is free within the stationary enclosing sphere S,, will move under 
the thermal force. Cooley & O'Neill (1969b) have given the force coefficients for the 
eccentric-spheres case when they are moving toward each other through an inertialess 
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FIGURE 8. The force coefficient on the inner sphere for various values of the radius ratio A =a2/nl 
(eccentric-spheres problem for thermal creep). 

continuum fluid with the same speed. Since rigid-body motion of the gas is achieved 
when the eccentric spheres are moving with the same speed in the same direction, 
we may calculate X,,, X,,, X,, and X,, in (5.15) from the results of Cooley & O’Neill 
(19693) and from the rigid-body motion: 

(6.9) i Xll(9, 4 = AX,,(9’ A )  = if(% 4, 

X,,(g, 4 = X,,(9>4 = ---X11(99 4, 
2 

1 + A  

where y(g,h) is the force coefficient on the inner sphere for eccentric spheres 
approaching each other, and is given in table 3 of Cooley & O’Neill (19693) by the 
notation R,. Unfortunately, Cooley & O’Neill have not given the expression for1  (or 
Fl in their notation) but only a small number of the numerical values, so we think 
it worthwhile to  give the explicit expression for it for further possible use : 

m 

X,,(g, A )  = sinh 5, C ((2n- 1 )  (2n+3)  n(n+ 
n-l (2%- 1 )  (2n+3)  

(6.10) x [sinhz 5, e-(zn+l) 5% - sinh2 5, e-(2n+l) 511 

+ [ (2n+ 1 )  sinh 25, + 2 cosh 25,] d Z n + l ) 5 2  

- [ (2n+  1 )  ~ i n h 2 5 , + 2 c o s h 2 ~ , ] e - ( ~ ~ + ~ ) ~ 1 } / 4 ~ ( 5 , ,  t,), 

where L I : ( ( ~ , ~ , )  is given in (6.7), and the relation between (g ,h)  and (t1,t2) 
is given by (5.11), except that z1 there should be replaced by z1 = 
[ ( l - h + g ) 2 + 1 - h 2 ] / [ 2 ( 1 - A + g ) ] .  The sphere 8, will then move with the velocity 

(6.11) 
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under the thermal force, which is given by (5.7) together with (6.6) for fi. The 
numerical values of fi ,  X,,  and x: are available (from the author on request). 
The following numerical examples of zy(g,h),  say, for h = 3.0 will give some idea 
of the velocity W, : zy = 0,982 83 a t  g = 0.2, 1.487 73 a t  g = 0.5, 1.89481 a t  g = 1 .O, 
2.08894 a t  g = 1.5, and 2.14874 at g = 1.99. Incidentally, it  should be pointed out 
that the results for the eccentric-spheres case reproduce the corresponding ones for 
the sphere-plane case. 

Finally, i t  should be noted that assumption (ii) of $ 1  can be extended to a more 
general case in which some of the molecules impinging on the surfaces are specularly 
reflected, i.e. boundary conditions of specular-diffusive type or Maxwell type hold. 
The simple replacement of the present set ( K l ,  Y,(q)) with the corresponding one given 
by Onishi ( 1 9 7 2 ~ )  i.e. ( - i d ,  - Q ( q ) )  or its refined version ( - -$c~,  -QT(y)) (Onishi 
1973), leads to the desired results for this case. 
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